Phylogenetic analysis reveals multiple lateral transfers of adenosine-5'-phosphosulfate reductase genes among sulfate-reducing microorganisms.
نویسنده
چکیده
Lateral gene transfer affects the evolutionary path of key genes involved in ancient metabolic traits, such as sulfate respiration, even more than previously expected. In this study, the phylogeny of the adenosine-5'-phosphosulfate (APS) reductase was analyzed. APS reductase is a key enzyme in sulfate respiration present in all sulfate-respiring prokaryotes. A newly developed PCR assay was used to amplify and sequence a fragment ( approximately 900 bp) of the APS reductase gene, apsA, from a taxonomically wide range of sulfate-reducing prokaryotes (n = 60). Comparative phylogenetic analysis of all obtained and available ApsA sequences indicated a high degree of sequence conservation in the region analyzed. However, a comparison of ApsA- and 16S rRNA-based phylogenetic trees revealed topological incongruences affecting seven members of the Syntrophobacteraceae and three members of the Nitrospinaceae, which were clearly monophyletic with gram-positive sulfate-reducing bacteria (SRB). In addition, Thermodesulfovibrio islandicus and Thermodesulfobacterium thermophilum, Thermodesulfobacterium commune, and Thermodesulfobacterium hveragerdense clearly branched off between the radiation of the delta-proteobacterial gram-negative SRB and the gram-positive SRB and not close to the root of the tree as expected from 16S rRNA phylogeny. The most parsimonious explanation for these discrepancies in tree topologies is lateral transfer of apsA genes across bacterial divisions. Similar patterns of insertions and deletions in ApsA sequences of donor and recipient lineages provide additional evidence for lateral gene transfer. From a subset of reference strains (n = 25), a fragment of the dissimilatory sulfite reductase genes (dsrAB), which have recently been proposed to have undergone multiple lateral gene transfers (M. Klein et al., J. Bacteriol. 183:6028-6035, 2001), was also amplified and sequenced. Phylogenetic comparison of DsrAB- and ApsA-based trees suggests a frequent involvement of gram-positive and thermophilic SRB in lateral gene transfer events among SRB.
منابع مشابه
The presence of an iron-sulfur cluster in adenosine 5'-phosphosulfate reductase separates organisms utilizing adenosine 5'-phosphosulfate and phosphoadenosine 5'-phosphosulfate for sulfate assimilation.
It was generally accepted that plants, algae, and phototrophic bacteria use adenosine 5'-phosphosulfate (APS) for assimilatory sulfate reduction, whereas bacteria and fungi use phosphoadenosine 5'-phosphosulfate (PAPS). The corresponding enzymes, APS and PAPS reductase, share 25-30% identical amino acids. Phylogenetic analysis of APS and PAPS reductase amino acid sequences from different organi...
متن کاملPlant adenosine 5'-phosphosulfate reductase is a novel iron-sulfur protein.
Adenosine 5'-phosphosulfate reductase (APR) catalyzes the two-electron reduction of adenosine 5'-phosphosulfate to sulfite and AMP, which represents the key step of sulfate assimilation in higher plants. Recombinant APRs from both Lemna minor and Arabidopsis thaliana were overexpressed in Escherichia coli and isolated as yellow-brown proteins. UV-visible spectra of these recombinant proteins in...
متن کاملFunctional knockout of the adenosine 5'-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation.
The reduction of adenosine 5'-phosphosulfate (APS) to sulfite catalyzed by adenosine 5'-phosphosulfate reductase is considered to be the key step of sulfate assimilation in higher plants. However, analogous to enteric bacteria, an alternative pathway of sulfate reduction via phosphoadenosine 5'-phosphosulfate (PAPS) was proposed. To date, the presence of the corresponding enzyme, PAPS reductase...
متن کاملThe Membrane QmoABC Complex Interacts Directly with the Dissimilatory Adenosine 5′-Phosphosulfate Reductase in Sulfate Reducing Bacteria
The adenosine 5'-phosphosulfate reductase (AprAB) is the enzyme responsible for the reduction of adenosine 5'-phosphosulfate (APS) to sulfite in the biological process of dissimilatory sulfate reduction, which is carried out by a ubiquitous group of sulfate reducing prokaryotes. The electron donor for AprAB has not been clearly identified, but was proposed to be the QmoABC membrane complex, sin...
متن کاملDiversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir
Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 184 1 شماره
صفحات -
تاریخ انتشار 2002